Senior UX Engineer
Pascal Landry
Scroll

Featured Works

My expertise is focus in research, UX and development in the field of HCI. This is reflected in my works that are mostly centered on installations in public space and videogames for physical activity.

Want to see more works? See More

About Me

Pascal Landry

Pascal Landry

Senior UX Engineer

Pascal Landry is a Senior UX Engineer with over 15 years of experience in designing, developing and managing projects in the field of Human Computer Interaction . He has a PhD degree and a M.Sc. in Cognitive Systems and Interactive Media from the department of Information and Communication Technologies at University Pompeu Fabra (UPF). He holds a B.A. in Communication Studies, Interactive Media from University of Quebec in Montreal (UQAM). In the past years, he has mainly worked in projects for public space.

Linkedin

Skills

Programming

  • C++
  • C
  • Java
  • HTML
  • CSS
  • Javascript
  • NodeJs
  • ReactJs
  • CoffeeScript
  • PHP

Framework & Database

  • openFrameworks
  • openCV
  • Processing
  • Arduino
  • Caffe
  • MaxMSP & Jitter
  • Pure Data
  • MySql
  • MongoDb
  • Sql Server

Design

  • Photoshop
  • Illustrator
  • Gimp
  • Inkscape
  • Final Cut
  • Sony Vegas

Managenent

  • Asana-Agile Oriented
  • Github
  • Bitbucket

Resume

Work
Experience

I have 15+year experience as a developper and 10+year as a UX Engineer specialist in human-computer interaction. You can see here my work history.

  • 2018 Present

    Gestoos

    UX Developer

    Gestoos is a company providing AI platform that enables cameras and sensors to see, understand, and respond to human movement and behavior in any environment or context. In Gestoos, I am in charge of developing the Digital Signage product and the Usability Testing of every product developed in the company.

  • 2015 2017

    Imersivo SL

    CTO & Computer Vision Lead Engineer

    Imersivo is a startup designing interactive kiosks and vending machines for retailers. Those solutions embed a computer vision system for interaction, recommendations and analytics. At Imersivo, I was in charge to manage the technological development of a system build on three pillars: Centralized cloud platform for managing and providing ecommerce cloud services. Computer vision libraries for gestural recognition and facial features extraction. UX of a full-body interaction for sales point interface.

  • 2010 2014

    Teaching Assistant

    UPF

    Prepare and gives classes related to interactive systems, computer graphics, English for engineers, structure of data and algorithms and programming fundamental.

  • 2007 2009

    Freelancer

    UX Developer

    Design and develop public installations for social & cultural events and websites. I worked in different projects developed in Montreal and Barcelona.

  • 2006 2008

    Communautique

    Instructor

    Communatique is a NGO based in Montreal providing resources to master computer tools. My role in this organization was to give workshops on the assembly of microcomputers, multimedia and the management of systems, to create training manuals for the participants and to work in the community sensitizing the population to the use of free software and their environmental stakes.

  • 2003 2005

    Agraph Consultants inc.

    Junior Software Developer

    Agraph Consultants inc. was a company based in Montreal that was developing computer tools for municipal management. Inside this company, I was in charge to analyze and design a software program for land register.

Studies

My studies have been centered toward Interactive Media and Communication. I have oriented my education to acquire the expertise in communication and design strategies of content with new technologies.

  • 2015 2010

    PhD, Information and Communication Technologies

    UPF, Barcelona

    Thesis: Towards an Adaptive System for the Regulation of Physical Activity of Children for exergames.

  • 2010 2008

    Master of Science, Interdisciplinary Cognitive Systems and Interactive Media

    UPF, Barcelona

    Thesis: Understanding the relationship between interaction tempo and physical activity in the Interactive Slide.

  • 2008 2005

    Bachelor Degree, Interactive Medias

    UQAM, Montreal

    Communications Studies (Interactive Medias), University of Quebec at Montreal (UQAM), Montreal, Canada.

  • 1999 2003

    School of Computer Science

    Lionel-Groulx College, Ste-Therese

    Computer Science Technology, Lionel-Groulx College, Ste-Therese, Canada.

Grants
& Awards

I have been rewarded over my scholars years of grants and scholarship for the quality of my academic records and my social engagement.

  • 2015 2012

    FI-DRG 2012 - Grants for universities and research centres for the recruitment of new research personnel

    Generalitat, Catalan Government

    The object of this call for grant applications is to award universities and research centres to recruit new research personnel and promote research quality by contracting personnel in research groups that develop a current and funded R&D project.

  • 2012 2010

    DTIC PhD Fellowship

    UPF, Barcelona

    PhD Fellowships (PRC), Department of Information and Communication Technologies, University Pompeu Fabra.

  • 2010 2008

    DTIC Master Grants

    UPF, Barcelona

    Master Grants Program, Department of Information and Communication Technologies, University Pompeu Fabra.

  • 2007 2007

    Génome Quebec and the Network of the University of Quebec

    Génome Quebec, Canada

    10,000$ prize won for the presentation of an interactive scenario aimed at explaining genomics to high school level students.

  • 2007 2007

    Millennium Excellence Award Program Scholarship by the Government of Canada

    Canada

    Awarded for the excellence of my academic file as well as for my community involvement with a charitable organisation.

Publications

I have started my research activity in 2010 under the supervision of Dr. Narcis Pares. Together, we have studied the potential of exercising with videogames, commonly called exergames. The goal of these studies were to define design strategies to improve exergames at a level in which a desire amount and quality of physical activity can be controlled. Most of the following publications results of these studies.

  • 2014  

    Controlling and modulating physical activity through Interaction Tempo in exergames: A quantitative empirical analysis

    Pascal Landry, Narcis Pares

    Childhood health issues related to sedentary behavior have risen dramatically over the last 20 years. One of the key factors in this rise is that children are increasingly spending more time on sedentary leisure activities such as game consoles and the Internet. Research turned to interactive exertion interfaces, or exergames, to try to compensate for the lack of physical activity in children and teenagers. Part of this research, especially in HCI, has focused on game design to truly guarantee that children are motivated to play with exergames and hence increase physical activity. Other research, essentially medical, has focused on determining whether these existing exergames foster sufficiently high levels of physical activity as recommended by health experts and compared to sports activity. An important part of research, which has almost not been addressed, is that of finding an automated system to control the amount of physical activity (APA). Such system would ultimately allow health and physical education experts to draw intensity curves for play sessions to guarantee that children perform a healthy activity. Such system clearly needs a way to control this APA. We have defined a game system variable, dubbed Interaction Tempo, which has been empirically proven to be directly related to the APA performed by children in an exergame platform we have designed, the Interactive Slide. In this paper we define and justify what Interaction Tempo is and how it is related to the game control system. We describe two studies (independent factorial designs) that we have designed and undertaken with over 420 children. Our current results do not quantify the APA performed by children in an absolute manner. This will be part of future stages of our research with the support of medical experts and relating APA to Energy Expenditure. However, we have now proven that we can control and modulate the change in APA through the change in Interaction Tempo. These results provide a solid ground on which to design new exergames, as well as the underlying mechanism for developing adaptive systems that automatically control gameplay. This way the APA will always be at the level defined by physical education or health experts for the duration of a play session.

    Journal of Ambient Intelligence and Smart Environments, Volume 6, Issue 3, 2014, Pages 277-294
  • 2012  

    Design Strategy to Stimulate a Diversity of Motor Skills for an Exergame Addressed to Children

    Pascal Landry, Joseph Minsky, Marta Castañer, Oleguer Camerino, Rosa Rodriguez-Arregui, Enric Ormo, Narcis Pares

    A rich variety of videogames promoting physical activity has followed the emergence of new full-body interfaces. Known as exergames, these active videogames are often presented in the market as a ludic substitute to traditional sport. Although they present the benefit of being engaging, to date, the content and modality of interaction of these games cannot be granted as a regular mean to do exercise. This is an issue of particular relevance when they are perceived as a valid alternative to develop children's motor skills. This paper presents the design strategies and evaluation of the "Fish Game", an exergame that has been specifically designed to spur children to execute specific types of movement determined by health experts. In a controlled assessment with 150 children, we compared the diversity of movement in the Fish Game with respect to a previously designed game. Video analysis shows a richer variety of movements was executed in the Fish Game. We discuss the limitations of our current design procedure and future avenues that could be explored with health experts to enhance it.

    IDC '13 Proceedings of the 12th International Conference on Interaction Design and Children
  • 2012  

    Controlling the amount of physical activity in a specific exertion interface

    Pascal Landry, Narcis Pares

    We present the empirical validation of a system that controls the amount of physical activity that children do while playing in a specific exertion interface called the Interactive Slide. The control of the amount of physical activity is done through a newly defined system variable we call the Interaction Tempo. Moreover, the detection of this physical activity is done in a non-invasive manner using a computer vision system. Both the control potential of physical activity by the Interaction Tempo and the quantification of this physical activity by the computer vision system have been validated against the change in heart rate of the users. This provides a safe, unencumbered, comfortable and natural system for children play and opens the door to apply it in other exertion interfaces.

    CHI '12 Extended Abstracts on Human Factors in Computing Systems (CHI EA '12)
  • 2012  

    Participatory design for exertion interfaces for children

    Pascal Landry, Narcis Pares, Joseph Minsky, Roc Pares

    We propose an adaptation of Participatory Design (PD) specifically conceived for full-body interaction design addressing the specificities that this entails. The idea is to include the preferences and points of view of children in the process of designing exergames allowing them to: (a) design activities that foster sufficient physical activity and a rich diversity of movement, (b) link this activity to the topic of the game and, (c) understand and test their designs at full-body scale already at prototype level.

    IDC '12 Proceedings of the 11th International Conference on Interaction Design and Children
  • 2011  

    Fostering Body Movement In Children Through An Exertion Interface As An Educational Tool

    Marta Castañer, Oleguer Camerino, Narcís Parés, Pascal Landry

    We present an exertion interface called the Interactive Slide (Soler, Ferrer, Parés, 2009), a large inflatable slide augmented with virtual reality technology that offers the possibility to children to move freely in a large and diverse spatial area. Diversity of motor skills actions that children do while playing were analyzed with observational methodology and sequential analysis through temporal pattern detection (T-patterns) to obtain behavior motor responses. The results reveal that the strategic virtual games of this Interactive Slide stimulate a large number of motor skills and a rich variability of them. Thus, in a pedagogical sense, it optimizes body movement in children while exergaming.

    World Conference on Educational Technology Researches - 2011
  • 2010  

    PIPLEX: tangible experience in an augmented reality video game

    José María Blanco, Pascal Landry, Sebastián Mealla C., Emanuela Mazzone, Narcís Parés

    In this paper we describe a work in progress of a mixed-reality framework based on tangible interface applied to a video game designed for children. This video game, called PIPLEX, lays on the ability of the users to solve a puzzle through modelling malleable materials (namely plasticine and cardboard). We explain the implementation of PIPLEX, its interaction rules and the physical set-up. Additionally, we suggest future applications that can be developed in the context of our framework.

    IDC '10 Proceedings of the 9th International Conference on Interaction Design and Children

Want to see my printable resume? Download now.

If you have
any question ask me

If you would like to have more information and get in touch with me, give me a call or drop us an email and I will get back to you as soon as I can.

  • Pascal Landry
    Barcelona, Spain
  • Phone
    +34 622 502 945
  • Skype
    pascal.landry
  • Email
    pascal@dipflow.com